Appendix E: Overview of Vascular

Peripheral – Short

Device Description:
Catheter, less than 3 inches (7.5 cm) in length; over-the-needle catheter is most common. Inserted by percutaneous venipuncture, generally into a hand or arm vein (Halderman, 2000).

Conclusions:
- Peripheral catheters should be used for anticipated IV therapy not greater than 6 days, infusions which are iso-osmotic or near iso-osmotic and whose pH value is between 5 – 9.
- Central access is recommended for vesicant drugs.
- Repeated venipunctures may be needed to maintain IV access.
- Infiltration, phlebitis or catheter obstruction can interrupt therapy.
- Dwell time and types of medications that can be given are limited.

Halderman, 2000

Peripheral – Midline

Device Description:
Between 3 – 8 inches (7.5 – 20 cm) long; inserted within 1.5 inches (3.75 cm) above or below the antecubital fossa. Catheter tip ends in the peripheral vasculature below the axilla (Halderman, 2000).

Conclusions:
- Midline catheters should be considered for IV therapy where more than 3 IV catheters may be needed, infusions which are iso-osmotic or near iso-osmotic and whose pH value is between 5 – 9.
- Central access is recommended for vesicant drugs.
- Maintains IV access without repeated venipunctures.
- Requires a large diameter vein such as the basilic vein.
- Upper arm contractures, injury or other vascular or musculoskeletal conditions may prevent successful insertion.
- Types of medications that can be infused are limited.

Halderman, 2000
Access Devices

DISCUSSION OF EVIDENCE

Gauge and Length of Device
- The vasculature shall accommodate the gauge and length (INS, 2000).
- Select the smallest gauge and shortest length (Camp-Sorrell, 1996; CDC, 2002; INS, 2000; Markel Poole, 1999).

Length of Dwell
- Three days has been established as the maximum length of time to use peripheral intravascular lines. Health Canada retains 3 days as the upper limit for peripheral sites in all settings (Health Canada, 1997).
- Peripheral veins are prone to phlebitis and subcutaneous perivenous infiltration, and the catheter should not stay in one site longer than 48 – 72 hours (Vanek, 2002a).
- Rotate sites q72 – 96 hours to reduce risk for infection and phlebitis (CDC, 2002).

Length of Therapy
- Steel or plastic cannula may be left in place for up to 72 hours (Health Canada, 1997).
- Use a midline catheter or PICC when the duration of therapy will likely exceed 6 days (CDC, 2002).
- Devices used for short term use (Markel Poole, 1999); Short term therapy – contraindicated for therapy longer than approximately 5 days (Vanek, 2002a).
- Use a midline catheter or PICC when the duration of IV therapy will likely exceed 6 days (CDC, 2002).
- For therapy of more than 5 days, to preserve the integrity of the veins and increase client comfort (Camp-Sorrell, 1996).
- Fluids and medications close to normal serum osmolality and pH to prevent vein wall irritation.
- Not recommended for the infusion of parenteral nutrition solutions, vesicants or other irritant medication (Orr & Ryder, 1993).
- Medium term (Markel Poole, 1999); short term 3 days to 6-8 weeks (Vanek, 2002a); intermediate dwell (Lawson, 2003); mean anticipated length of therapy = 13 days (King, 1995).
CONSIDERATIONS

PICCs are recommended for all infusion therapies. If anticipated therapy exceeds more than one year, a tunneled catheter or implanted port should be considered.

- May be inserted at the bedside or in radiology under fluoroscopy.
- Use of maximum sterile barrier during insertion (CDC, 2002; EPIC, 2001c).
- Low rate of infection.
- Upper arm contractures, injury or other vascular or musculoskeletal conditions may prevent successful insertion (Halderman, 2000).
- Radiographic confirmation of tip location is required prior to use.

TYPE OF DEVICE

<table>
<thead>
<tr>
<th>Device Description:</th>
<th>CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central – Peripherally Inserted Central Catheter (PICC)</td>
<td>PICCs are recommended for all infusion therapies. If anticipated therapy exceeds more than one year, a tunneled catheter or implanted port should be considered.</td>
</tr>
</tbody>
</table>
| A single or double lumen central venous catheter inserted via a peripheral vein – the tip terminates in the superior vena cava (SVC) (Halderman, 2000). | - May be inserted at the bedside or in radiology under fluoroscopy.
- Use of maximum sterile barrier during insertion (CDC, 2002; EPIC, 2001c).
- Low rate of infection.
- Upper arm contractures, injury or other vascular or musculoskeletal conditions may prevent successful insertion (Halderman, 2000).
- Radiographic confirmation of tip location is required prior to use. |
| **Central – Tunneled Central Venous Catheter** | Requires surgical placement.
- Cuff secures catheter in place, and prevents bacteria from migrating into the bloodstream (Halderman, 2000).
- Use optimum aseptic technique, including a sterile gown, gloves, and a large sterile drape for the insertion of central venous catheters (CDC, 2002; EPIC, 2001c). |
| Single, double or triple lumen device, surgically tunneled through subcutaneous tissue to an exit site generally on the chest or abdominal wall. The tip rests in the vena cava. A cuff that lies in the subcutaneous tunnel, around which fibrous tissue grows, helps to secure the device (Halderman, 2000). |
DISCUSSION OF EVIDENCE

Length of Therapy
- Duration of IV therapy will likely exceed 6 days – use for clients requiring frequent or continuous access.
- Several weeks or months (EPIC, 2001c; Winslow et al., 1995); medium term (Markel Poole, 1999).
- Intermediate to long term access in general, or the need for central vascular access (Vanek, 2002a).
- Specific diagnoses that are often associated with prolonged needs for reliable access (Bowen Santolucito, 2001).
- IV access greater than 10 – 14 days (Ryder, 1995).
- For therapy lasting more than 6 days to preserve the integrity of veins and increase comfort (CDC, 2002; Camp-Sorrell, 1996).

Tip Position
- Tip dwelling in the superior vena cava (INS, 2000).
- If the catheter tip is located outside of the vena cava, the catheter is no longer considered a central catheter and should be removed as the tip location may no longer be appropriate for the prescribed therapy (INS, 2000).

Other considerations
- Client selection criteria – infusion of vesicant or irritating drugs; hyperosmolar solutions, client preference, client location (home setting) (Camp-Sorrell, 1996);
- Consider the use of PICCs as an alternative to subclavian or jugular vein catheterization (EPIC, 2001c).

Length of Therapy
- Frequent or continuous access (CDC, 2002)
- Use a tunneled catheter or an implantable vascular access device for clients in whom long-term (＞30 days) vascular access is anticipated (EPIC, 2001c)
- Tunneled catheters or totally implanted devices as appropriate for the intended purpose should be used for clients requiring long-term vascular access.
- Greater than 6 months (Winslow et al., 1995); long term (Markel-Poole, 1995),
Assessment and Device Selection for Vascular Access

<table>
<thead>
<tr>
<th>TYPE OF DEVICE</th>
<th>CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central – Percutaneous
Non-Tunneled Catheter</td>
<td>Recommended for short-term access to the central circulation in critical situations, or when peripheral access is inadequate or inappropriate.
Not generally recommended for home care, but client circumstances and care requirements should be considered on an individual basis.
Use optimum aseptic technique, including a sterile gown, gloves, and a large sterile drape for the insertion of central venous catheters (CDC, 2002; EPIC, 2001c).</td>
</tr>
<tr>
<td>Device Description:
A catheter, often with multiple lumens, inserted percutaneously through the subclavian, jugular, or femoral vein (Halderman, 2000).</td>
<td></td>
</tr>
<tr>
<td>Central – Implanted Port</td>
<td>Requires a minor surgical procedure for placement and removal.
When not in use, requires less maintenance than other VADs.
May preserve a client's body image.
Medication delivery requires injection through skin (Halderman, 2000).
Use optimum aseptic technique, including a sterile gown, gloves, and a large sterile drape for the insertion of central venous catheters (CDC, 2002; EPIC, 2001c).</td>
</tr>
<tr>
<td>Device Description:
An implanted reservoir generally placed in the chest or arm, attached to a catheter with tip position in the central vasculature. Infusate is delivered to the reservoir via an external non-coring needle and extension tubing (Halderman, 2000).</td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION OF EVIDENCE

Length of Therapy
- Short-term continuous therapy (5 – 10 days) (Camp-Sorrell, 1996).

Tip Position
- If the catheter tip is located outside the vena cava, the catheter is no longer considered a central catheter and should be removed as the tip location may no longer be appropriate for the prescribed therapy (INS, 2000).
- Tip dwelling in the superior vena cava (INS, 2000).

Length of Therapy
- Use smallest gauge needle and appropriate length to access – change every 7 days (INS, 2000). Needles should be changed frequently enough to prevent skin breakdown. This should be at least every 7 days (Health Canada, 1997).
- Use a tunneled catheter or an implanted vascular access device for clients in whom long-term (30 days) vascular access is anticipated (EPIC, 2001c).
- Long-term, intermittent therapy (CDC, 2002).
- Cuffed tunneled catheters or totally implanted devices as appropriate for the intended purpose should be used for clients requiring long-term vascular access (Health Canada, 1997).
Assessment and Device Selection for Vascular Access

<table>
<thead>
<tr>
<th>TYPE OF DEVICE</th>
<th>CONSIDERATIONS</th>
<th>DISCUSSION OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous Infusions (Hypodermoclysis)</td>
<td>- Can be used for continuous or intermittent infusions of isotonic fluids and selected medications (e.g., s/c opioid infusion) (INS, 2000).</td>
<td>- Rotate sites every 3-7 days, as necessary. Smallest, shortest gauge (INS, 2000).</td>
</tr>
<tr>
<td>a) intermittent</td>
<td>- Hypodermocysis fluid administration is appropriate as a short-term measure to restore or to maintain hydration in clients who are mildly dehydrated or who are at risk of dehydration.</td>
<td></td>
</tr>
<tr>
<td>b) continuous</td>
<td>- Subcutaneous infusions are as effective as intravenous infusions in restoring and maintaining hydration and are less likely than intravenous infusions to produce fluid overload (O’Keeffe & Geoghegan, 2000).</td>
<td></td>
</tr>
<tr>
<td>Device Description:</td>
<td>- In using as an alternative to infusion therapy, lower risk of complications.</td>
<td></td>
</tr>
<tr>
<td>A fine gauge device developed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>specifically for the s/c route, placed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in the subcutaneous tissue of the upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arm, chest wall, upper back, abdomen,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thigh etc. as an alternative to vascular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>access, where appropriate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>